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Track-to-track fusion has been studied extensively for both homo-
geneous and heterogeneous cases, these cases denoting common and
disparate state models. However, as opposed to homogeneous fusion,
the cross-covariance for heterogeneous local tracks (LTs) in different
state spaces that accounts for the relationship between the process
noises of the heterogeneous models seems not to be available in the
literature. This work provides the derivation of the cross-covariance
for heterogeneous LTs of different dimensions where the local states
are related by a nonlinear transformation (with no inverse transfor-
mation). First, the relationship between the process noise covariances
of the motion models in different state spaces is obtained. The cross-
covariance of the local estimation errors is then derived in a recursive
form by taking into account the relationship between the local state
model process noises. Both the synchronous and asynchronous sys-
tems are considered. A linear minimum mean square fusion is carried
out for a scenario involving tracks from two LTs: one from an active

sensor and one from a passive sensor.
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[. INTRODUCTION

In a heterogeneous system, the state models used by
local sensors are in different state spaces with different
dimensions. The fusion for heterogeneous systems needs
investigation since it is closely related to the real-world
problems. One reason for using distinct system models in
the local trackers is the different sensor characteristics —
active versus passive. For example, for self-driving ve-
hicle system perception, heterogeneous tracks are in-
evitable due to different coordinate systems, which are
related by a nonlinear transformation. Low-level fusion,
or centralized track/fusion (CTF), is characterized by
transferring raw data from each sensor to the fusion
center (FC). It requires communication with high band-
width since all the raw data need to be transferred on
demand, which is not feasible for most of the practical
applications. The track-to-track fusion (T2TF) to be con-
sidered is characterized by local tracking at each of the
sensors and a fusion combining the tracks from multi-
ple sensors at the FC. For several applications in defense
systems and self-driving vehicle systems, T2TF fusion is
preferred due to communication constraints.

For T2TF, it is critical to consider the cross-
covariance between the track estimation errors of the
same target at different local trackers. The fusion
of homogeneous local tracks (LTs)—when the state
models at two sensors are the same—considering the
“common process noise” of the LTs is discussed in [1, Ch.
9]. The work [2] considered homogeneous T2TF with
the cross-covariance for the asynchronous case. The fu-
sion of heterogeneous LTs from local sensors that use
different state models was presented in [3]; however, it
assumed the cross-covariance between the local state es-
timation errors to be zero since the cross-covariance was
not available. The contributions of this paper compared
to [3] are as follows: (i) the cross-covariance of the pro-
cess noises of the heterogeneous models is derived and
(i) the cross-covariance of the heterogeneous estima-
tion errors from the LTs is derived. The recent work [4]
deals with the heterogeneous T2TF in 3D using an in-
frared search and track (IRST) sensor and an air moving
target indicator (MTT) radar based on information ma-
trix fusion taking into account the cross-covariance be-
tween the LTs. However, the main limitation of [4] is that
the authors assumed that the local state vectors have the
same dimension with a unique inverse mapping, which is
not realistic in most of the heterogeneous T2TF scenar-
ios where the inverse transformation does not exist due
to the different state space dimensions.

This work provides the derivation of the cross-
covariance for the heterogeneous LTs of different di-
mensions where the local states are related by a non-
linear transformation without inverse transformation.
The heterogeneous T2TF considered here has no in-
formation feedback. The relationship between the pro-
cess noise covariances of the two motion models is
presented. The state model process noise covariance
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in the smaller state space can be obtained (through a
mapping based on the nonlinear relationship) from the
state model process noise covariance and the estimate
in the larger state space. The cross-covariance of the esti-
mation errors from two LTs is derived in a recursive form
by taking into account the relationship between the local
state model process noises. Both synchronous and asyn-
chronous systems are considered. In the asynchronous
case, where the sensors are having arbitrary sampling
times, the fusion happens at the union of the sampling
times of the two trackers, that is, with LT-driven commu-
nication. The asynchronous T2TF fusion is carried out
for a scenario of two tracks of a single target (one from
an active sensor and one from a passive sensor) with
a linear minimum mean square (LMMSE) fuser in the
simulation. The cross-correlation of the estimation er-
rors is shown to be sometimes positive and sometimes
negative depending on the sensor-trajectory geometry,
which confirms the results in [3] from a Monte Carlo
(MC) investigation.

The paper is organized as follows. Section II formu-
lates the heterogeneous fusion problem and derives the
relationship of the process noise covariances of the LT
models. Section III presents the cross-covariance of the
estimation errors. In Section IV, the state and measure-
ment models for both the active sensor and passive sen-
sor are introduced. Section V formulates the LMMSE
fuser. Section VI presents the simulation results from
MC runs. The summary and conclusions are provided in
Section VII.

[I. PROBLEM FORMULATION AND THE
RELATIONSHIP BETWEEN THE PROCESS NOISES

A. Synchronous Case

In the synchronous case, the LTs share the same sam-
pling time and are assumed to have the full rate commu-
nication with the FC. Consider the state models at sen-
sors i and j in different state spaces with dimensions r%

and nJ, respectively,

X'(k+1) = fllk.x (k)] +v'(k), M

X (k+1) = filk, x! (k)] + v/ (k), (2)

and the measurements of dimensions 7, and nj, respec-
tively,

z(k) = h'[k, X' (k)] + W' (k), ®)

(k) = Wk, x (k)] + W (k), (4)

where v (k) and w”(k),m = i, j, are the process noises
and measurement noises assumed to be additive, zero
mean, and white with corresponding covariance matri-
ces Q" (k) and R™(k) (m = i, j). All the noises are also
assumed to be mutually independent, except v' is corre-
lated with v/ since they pertain to the motion of the same

target, although in different state spaces. The recursion
of the cross-covariance Q" (k) between v/(k) and v/ (k)
will be discussed later.

The nonlinear functions f™[-, -] and A™[-, -], m = i, j,
are distinct and may be time varying. The two state vec-
tors have a nonlinear relationship!

X =« [xi] ; 5)

with nl > nl, it is clear that (5) has no inverse.
Substituting (1) into the above equation yields

X(k+1)=a[xX(k+1)] =a[f[kx (k)] + v"(k)](.6

The vector Taylor series expansion of (6) up to the first-
order term is

a[x'(k+1)] = a[f[k X' (k)]
+ [Vea () T ez iy (k). (7)
Thus,
VI (k) = [Vea ()] Lz iy ¥ (k) = A(K)V (k). (8)

where
A(k) & [Vea (X)] Lz ik xi(o)] ©)

is the (n} x ni,i.e., not square) Jacobian corresponding
to (8).

Then, Q/(k), the covariance of the process noise
v/(k), can be expressed using Q' (k) as follows:

Q'(k) = E[v/(k)V/ (k)] = A(k)Q'(k)A(k)

and the cross-covariance between the two process noises
is

(10)

Q'(k) = E[V'(k)V/ (k)] = Q"(k)A (k). (11)

Note that in the estimation problem where the state
is not available, the Jacobian (9) will have to be evaluated
at the latest estimate.

B. Asynchronous Case

With LT (local filter/tracker)-driven communication,
the fusion of an asynchronous system (i.e., with tracks
from radar and infrared/electro-optical sensors) is car-
ried out whenever the FC receives new information. As
shown in Fig. 1, sensor i is assumed to be the active one
with state vector in the larger state space (of dimension
ni) and sensor j is the passive one with state vector in
the smaller state space (of dimension ny, nj < n.). For
the FC, the fusion times are equal to the times when new
information is obtained. From this figure, we have

(12)

4
U1 = tm+1

I'This is in general, and subsumes cases of equivalent states, situations
in which one state is a subset of the other, and other more complicated
relationships.
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FC times l—s  th—2 l1 1y 78]
LT times t;.?l L{n—l t?n t; L{n+1
Fig.1. FC times and LT times in asynchronous T2TF.

and
(13)

where [ and m denote the respective LT sampling indices.
Since the state error cross-covariance will have to be
iterated according to the FC times?

o} = i)

we will develop the relationship between the process
noises of the different local states

Fltrsts i X ()] + ¥ (tis 1)
= a [t e X)) + Vit )] (15)

Different from the synchronous case, the nonlinear func-
tions f[.,-,-] and f/[-, -, -] have three arguments: prop-
agation end time, propagation start time, and the state
at the propagation start time. The process noises v/(-, -)
and v/(-, -) have two arguments: propagation end time
and propagation start time. Following (7) with first-order
Taylor expansion, the second term on the left-hand side
is given by

=t

(14)

Vi(l‘kﬂ, tk) = A(tk)Vi(thrl, [k), (16)

where

At) & [Vaa(x)]

17
x= filtgpr X (1)) ( )
with dimension n/ x n'.

The covariance matrix of v/(f;,, #x ) can be obtained
by
O (trs1. tr) £ E[V/ (tkst, i)V (11, 1))
= E[A(t)V (k1 1)V (s ) A1) ']
= A(ti) Q' (trs1. tr) A1) - (18)

The cross-covariance between the process noises is
O (ties1, 1) = E[V (i, ti)V (trs1, 1))
= E[V/(try1, 5V (1, 1) A(te)']
= Q' (ki1 k) A1) - (19)

The process noises are assumed to be additive, zero
mean, and white. It should be noted that to ensure the
whiteness of the discrete time process noises over the ar-
bitrary sampling intervals, one has to use the discretized
continuous-time white noise state propagation models.

2For asynchronous homogeneous sensors (with same LT states), the
cross-covariance iteration is given in [1, eq. (9.3.2-5)] based on the
“common process noise.” This has to be generalized to the heteroge-
neous states where there is no common process noise but the process
noises in the different states models are related.

[ll. THE CROSS-COVARIANCE OF THE ESTIMATION
ERRORS

A. Synchronous Case

Consider a tracker at a single sensor (this could be
sensor i or sensor j) with the state model and measure-
ment model to be

x(k+1) = flk,x(k)] + v(k), (20)

z2(k +1) = hlk, x(k)] + w(k).

The updated state at time k is, using an extended
Kalman filter (EKF),

R(klk) = F[&(k — Lk = D]+ W(E)w(k).  (22)

Expanding h[k, x(k)] around X(k|k —1) yields the in-
novation

v(k) = hlk, x(k)] + w(k) — hlk, %(k|k — 1)]

= h[k, &(klk — 1)] + H(k)[x(k) — %(k|k — 1)]
+w(k) — hlk, £(klk — 1)]

= H(k)[x(k) — x(klk — 1)] + w(k),

where

eay)

(23)

H (k) = [Vih(k, X)/]/ Le=g(klk=1))-

Using the dynamic equation (20), (23) can be written
as

(24)

v(k) = H(k){ flx(k —1)] + v(k—1)
— fI&(k — 1k = 1)} +w(k).  (25)
Expanding f[x(k — 1)] around %(k — 1|k — 1) yields
v(k) = H(k){ f[&(k — 1]k — 1)] + F(k — 1)[x(k — 1)
—%k(k—-1k—-1)]+v(k—-1)
— fI&(k — 1]k = 1)]} + w(k)
= H(k)F(k—1)x(k—1k-1)

+H(k)v(k — 1)+ w(k), (26)
where
F(k=1) =[Vef(k = 1.X)] Limg-1e-1)- (27)
The estimation error at time k — 1 is
X(k—1k—1)=x(k—1)—%(k—1lk—1). (28)
Substituting (26) into (22) yields
R(klk) = f[&(k — 1]k —1)]
+W(k)H(k)F(k—1)x(k—1lk—-1)
+H(k)v(k—1) +w(k)]. (29)

The first-order vector Taylor series expansion of (20)
around X(k — 1|k — 1) is

x(k) = f[&(k — 1)k — 1)] + F(k — Dx(k — 1}k — 1) + v(k — 1).
(30)
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Subtracting (29) from (30), the estimation error at
time k can be expressed as

x(klk) = x(k) — x(k|k)
— [, = W(H (K)]F (k — Dx(k — 1k — 1)
+ o, = W(K)H (K)]v(k — 1) + W (k)w(k),
(31)
where I, is the ny-dimensional identity matrix and ny is
the dimension of the state vector x.

Following the discussion above, the estimation errors
from the two sensors i and j are

% (k|k) = x'(k) — % (k|k)
= Ly — W'(k)H'(k)]F'(k — 1)X'(k — 1]k — 1)
+ Ly = Wik H ()]V (k = 1) + W' (k)w' (k),
(32)

%/ (k|k) = x/ (k) — %/ (k|k)
= h[x'(k)] — &/ (klk)
=[L; —WIi(k)H (k)|F/(k — D)%/ (k — 1|k — 1)

nx

+1L, - W (k)H (k)]v/ (k — 1) + W/ (k)W (k).

(33)

Note that x/(k) in (33) is a[x/(k)] (5); that is, there is a
common truth in (32) and (33).
Then, the estimation errors’ cross-covariance (of di-

mension 7%, x n) is
P (klk) = E[X (kIk)X/ (klk)']
= [I = Wi(k)H (k)]F'(k — 1)PY(k — 1]k — 1)
x Fi(k = 1)[I - Wi(k)H (k)]
+ [ =W (k)H (K)]Q" (k — 1) = W/ (k)H' (k)]
= [I - W (k)H'(k)){F'(k — 1)P"(k — 1]k — 1)F/(k — 1)
+0Y (k= D}[I =W (k)H' (k)] (34)
B. Asynchronous Case

In this case, the cross-covariance between the estima-
tion errors is, based on [1, eq. (9.3.2-5)] and the previous
discussion about the synchronous case,

P(tltr) = (I — X ()W (1) H' (1)
AF by k1, R (ko1 11 (tk=1) ) )P (tr—1 =)
X FI(tg, iy, & (Gl (1))
+ 0 (e, i) YU = X ()W (1) H ()],
(35)

where t/(t,_1) and t/ (t;_, ) are the most recent times prior
totx_1 at which LT i and LT j sent information to the FC,

respectively, and

F'(te, ty—1, X (k111 (tk-1)))

= [foi(tk’ lk—1, x)/]/ |X=ﬁi(tk—l‘ti(tk—l)))’ (36)
F/(tg, tr—r, X (k111 (t-1)))
= [Va F (s ti-1, X) ] iy 37)

In (35),
X i (t) = { 1, if sensor i has a measurement at time 7,
0, others,
(38)
similarly for sensor j.
With the following assumptions for the previous
fused estimate X(t;_1|tx_1):

F'(ti, tk—1, & (k116 (16-1))) &~ F' (ty, tr—1, K(tx—11t6-1)),
(39)

FI(t, tr—1, & (a1t (1)) ~ F7 (1, i, R(61lte-1)),
(40)
equation (35) becomes
P () = [ — x" (@)W () H' ()]
AF (1 i1 R(tr—1 111V P (11 111
X F(tg, i1, X(tx-1lte1))'
+ O (e, M = X ()W () HY (1))
(41)
If the fusion is at a time when there is an updated state
only from LTj, it will use a prediction to that time from
LT;. Note that although the fusion can be carried out on

demand, the cross-covariance calculation needs to run
with full rate.

IV. THE STATE MODELS FOR THE ACTIVE AND
PASSIVE SENSORS

In the £ space, an active sensor located at [£? n?]
with range and azimuth angle measurements (without
time arguments, for simplicity)

r=\/($—§a)2+(n—na)2+wr,

(42)

0* = tan~'[(n — n*)/ (& — £M)] + w*

and a passive sensor located at [£P nP] with bearing mea-
surements only

6P = tan™'[(n — n°)/(§ — §P)] + wP (44)

are considered for the T2TF for a 2D target. The mea-
surement noises w’, w?, and wP are assumed to be inde-
pendent zero-mean white Gaussian with corresponding
standard deviations o, 02, and oP.

(43)
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The active sensor’s measurements in polar coordi-
nates are transformed into Cartesian coordinates with
an unbiased transformation [5, Sec. 10.4.3]. Given (42)
and (43), the unbiased transformed measurement vector

is
c b lrcos(6?) + &2
zcz[fc}:[ ! . (@)
n b71 in(62 a
1 rsin(6®) +n
where

-2, (46)

The transformed active sensor noise vector wc has the
covariance matrix Rc with elements

Re(1, 1) = b2 cos(0*) + 0.5(r* + o*) (1 + b} cos(6?)),
(47)

b1=e

Rc(2,2) = b sin(6%) + 0.5(% + 0)(1 — b} cos(6%)),
(43)
Rc(1,2) = Re(2,1)
= (0.5b%r* + 0.5(% + o)b] — r*)sin(26°).
(49)

For the active sensor, a nearly coordinated turn
model [7] is used for tracking along with an EKF. The 5D
state vector® includes position, velocity, and turn rate €2,
that is,

x'=[6&nnQ] (50)
with the discretized dynamic model to be
X' (@) = IO+ vIXEE)] (51)
2€ = B (i) + wE (@), (52)
where
FxEH]

E(f) + TUE() — (T} )n () /2
() — T*QU)n(E) — (T*)Q})*E(})/2
= () + T () + (T*) QU E) /2 :
() + T*QUMEE) — (T*?Q) (1) /2

Q)
(53)
L T1 00 0 0
H:[o 01 0 0] (54)

The process noise vector is target state depen-
dent and its covariance matrix is discussed in [3].
The continuous-time process noise “intensities” are the
power spectral densities that need to be chosen in the
design of the process noise covariance matrix.

3Here, the superscripts i and j used in the previous text are replaced
by “a” and “p” to indicate the states are from one active sensor and
one passive sensor, respectively.

The passive sensor uses a Kalman filter based on
a continuous-time Wiener process acceleration model
with a state vector involving the angle, angle rate, and
angle acceleration:

xP = [0 6 0]. (55)
The discretized dynamic model is
xP(t? +1) = FPxP(tP) +vP(eP), (56)
2P = HPX(15) + WP (15)), (57)
where
1 TP (TP)?)2
FP=10 1 TP , (58)
0 0 1
H?=[1 0 0]. (59)

The process noise covariance matrix of the passive
tracker’s model at time k has the relationship with active
process noise covariance matrix shown in (10). The state
vector (50) and the state vector (55) have a nonlinear
relationship

xP = o [x7] (60)
with explicit expressions
— P
9:21tan<)7 7 ) (61)
§—ép
g — vsin@) 62)
rP
_ vcos(¢)§2’ (63)
rP
where v is the target speed
b= e+ 2, (64)

rP is the range with respect to the passive sensor’s loca-
tion

= \/(é — &Y+ =Py,

and ¢ is the difference between velocity angle and posi-
tion azimuth angle:

¢ = atan <Q> —atan<’7 — np> .
§ §—¢&p

V. THE LMMSE ESTIMATOR FOR HETEROGENEOUS
T2TF

(65)

(66)

A. Synchronous Case
The LMMSE estimation for heterogeneous T2TF is

carried out (omitting the time arguments) with

K =14 = [€ € 7 i) (©7)
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as the active sensor’s track and

& =%P(1:2)=[0 4] (68)

as the passive sensor’s track.
The fused track estimate is obtained by (derivation
can be found in [1, Sec. 9.2.3])

(69)

where g[-] is the nonlinear relationship between the
states from the two sensors. Here, we use g rather than «
to avoid ambiguity in calculating the different Jacobians.
The corresponding fused covariance matrix is

& \use = X+ PaPy,' [R — g[&]),

Piyvise = P — PuPy,' Py, (70)
where
P, ~ P(G') — P, (71)
P, ~ P — G'P/ - P'(G"Y + G'P'(G'Y, (72)
and
G' = [Vag(x') ] y=g (73)

is the Jacobian evaluated at the estimate from sensor i.

B. Asynchronous Case

In the asynchronous case, the fusion is carried out at
the times given by the union of the different sampling
times of the two sensors. Since not all the LTs’ commu-
nications are available to the FC at the fusion time, pre-
dictions of the LTs’ latest estimates (prior or at the fusion
time) are used for LMMSE estimation. The fused track
estimate (extension of (69)) at time ¢ is obtained by

femmse (6) = [t 10, K¢ (018 (1)1

o+ PP P [t 00 X0 @)1 1))

—g| £ @)K @I @) |} ()

where t/(#;) and t/(t;) are the latest times up to and in-
cluding f; at which LT i and LT j sent information to
the FC. In (74), the latest estimates (or the predication
if needed) are used. The corresponding fused covariance
matrix calculation is carried out (based on (70)) in terms
of the LTs’ latest covariance matrices

PIiJMMSE(tk) = Pi(tk“i(tk)) - szPz_zlP;z’ (75)
where

P ~ P'(tlt' (1)) G (1|t (1)) — P (tclti),  (76)

P, ~ Pj(l‘k|l‘i(tk)) - Gi(tklti(tk))Pij(tkltk)
— Pt G (e (1))
+ G (' (6)) P (1l (66) G (il (1)), (77)

x10*

35+ 1

25} o |

1.5¢ 1

n (m)

05+ 1

05 .
O | |
-1 0 1 2 4 5

£ (m) x10%

1 1 1 1

o Passive sensor ¢ Active sensor

Fig.2. Target trajectory on the £— plane.

and

G (1l (1) = [Vag ()T (78)

i= 11 [t 1) 800 )10 1)1

is the Jacobian evaluated at the prediction/estimate from
LT i. The covariance matrix from LT i is

P (tlt (1))
P (1)1 (1)),

TV F ks 1 (), X () 12 ()] P2 (1) 12 (1))
Filte, t1(t), K[ ()1 (t1)]] + Q' (e, (1)), others.

if g =1'(tx),

(79)

VI.  SIMULATION RESULTS

In the simulation, a target moving in a plane is con-
sidered with initial position [—5 10] km and the initial
velocity [0 200] m/s in Cartesian coordinates. The tar-

@

50
E
& 40
=
o
c 30
S
B
S0 ‘
0 50 100 150 200 250 300 350
_50
E
& 40
s
o
c 30 Wh
i
=
(%]
S20 ‘
0 50 100 150 200 250 300 350

Time (s)
(a) — Active sensor Fusion without cross-covariance
(b) — Active sensor Fusion with cross-covariance

Fig.3. Position RMSEs from 500 MC runs.
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Position Difference Ratio (%)
% )
T

0 50 100 150 200 250 300 350
Time (s)

Fig. 4. Position RMSE difference ratio of the fused estimate (with
cross-covariance minus without cross-covariance divided by without
cross-covariance).

get keeps going straight for 60 s and makes a right turn
at 1 rad/s for 90 s. Then, it keeps straight for another 30 s
and turns to the right with turn rate 1 rad/s lasting for
45 s, followed by a left turn at 1 rad/s for 90 s, and finally
makes a right turn at 1 rad/s for 45 s. The trajectory of
the target is shown in Fig. 2.

The active sensor is located at [28 —9] km with mea-
surement noise standard deviations 6" =20 m and 0? =
1 mrad. The passive sensor is located at [14  26] km with
angle measurement noise o? = 1 mrad. The sampling in-
tervals are 7% = 2.5 s (for the active sensor) and 7P = 1s
(for the passive sensor). Five hundred MC runs are made
in the simulation to obtain the results. Maneuver du-
ration is highlighted on the time axis in the following
figures.

Fig. 3 shows the root mean square errors (RMSEs)
of the position vector from the active sensor, for both
fusion without cross-covariance and fusion with cross-
covariance. The difference ratio between the latter two
is compared (RMSE of fusion with cross-covariance mi-
nus RMSE of fusion without cross-covariance divided
by the latter one) in Fig. 4. Similarly, the velocity vec-

@ 25
E 20
7
E 15
= 10
% st ]
]
> 0 L

0 50 100 150 200 250 300 350

Time (s)
(b)

Q 25
Eont 4
&
: 15 - 1
2 10F M WY b, IS I _,_M\_J (TN
153
9 51 1
(]
=8 1

0 50 100 150 200 250 300 350

Time (s)

(a) — Active sensor Fusion without cross-covariance

(b) — Active sensor Fusion with cross-covariance

Fig.5. Velocity RMSEs from 500 MC runs.

Velocity Difference Ratio (%)
s
T

0 50 100 150 200 250 300 350
Time (s)

Fig.6. Velocity RMSE difference ratio of the fused estimate (with
cross-covariance minus without cross-covariance divided by without
cross-covariance).

tor RMSEs are shown in Fig. 5 with the difference com-
parison shown in Fig. 6. The negative differences shown
in Figs. 3 and 5 indicate better performance of the fu-
sion with cross-covariance as it achieves smaller RMSE.
For position, the fusion with cross-covariance has RMSE
reduction up to 6% (MSE reduction 12%); for veloc-
ity, the fusion with cross-covariance has RMSE reduc-
tion up to 8% (MSE reduction 16%). The difference
ratio depends on the maneuvers but is not only lim-
ited to that since the maneuvers are not obvious to the
passive sensor. The performance is sensitive to the ge-
ometry of the target’s trajectory and the sensor posi-
tions. The CTF using the original measurements sequen-
tially from different sensors is compared with the pro-
posed fusion approach with simulation results shown in
Figs. 7 and 8 for position and velocity, respectively. As
shown in [3], the CTF using interacting multiple model
(IMM) cannot “see” the maneuvers at the times when
there is only a passive sensor measurement—the CTF
IMM performs worse than the heterogeneous T2TF.
For the case considered in this work, the FC used one
EKF only. The CTF is sometimes worse (e.g., when the
target starts maneuvering after 60 s) since the passive
measurements (angle only) used in CTF-EKF cannot

Position RMSE (m)

0 50 100 150 200 250 300 350
Time (s)

Active sensor Fusion with cross-covariance — CTF

Fig. 7. Position RMSEs of the fused estimate.
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Fig. 8. Velocity RMSE:s of the fused estimate.

provide sufficient information on the target’s velocity
and maneuvers. The IMM is not used at the FC since
the cross-covariance needs to be weighted based on
the model probabilities and the relationship of different
state models in Cartesian space and in angle space. In
this work, this information is not available at the FC.
For the asynchronous, heterogeneous, and nonlin-
ear case considered, the fusion with cross-covariance
yields the actual variance, which is sometimes larger
and sometimes smaller than the variance obtained un-
der the (inaccurate) assumption of independence be-
tween the estimation errors. The variance differences
(variance of fusion with cross-covariance minus vari-
ance of fusion without cross-covariance) for each com-
ponent in the Cartesian state vector are shown in Fig. 9.
Neglecting the cross-covariance between the estima-
tion errors makes the fusion sometimes optimistic and
sometimes pessimistic. The normalized estimation er-
ror squared (NEES) with the maneuver duration high-
lighted is shown in Fig. 10. Due to the facts that (i) the
target is maneuvering (i.e., its motion uncertainty is de-
terministic rather than a stochastic white noise process)
and (ii) the local trackers are running asynchronously,
the system is not expected to be consistent with the ideal
NEES of 4. For the white noise-driven motion model as
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Fig.9. Variance difference of elements from the state vector in
Cartesian coordinates.

NEES
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Fig.10. NEES from 500 runs.

in [6], the fusion with cross-covariance was shown to be
consistent.

The cross-correlation coefficients between the ele-
ments in (67) and (68) are shown in Fig. 11. The cross-
correlation coefficients depend on the geometry of the
two sensors and the target as well as the maneuvers
of the target. It can be seen from Fig. 9 that some
of the cross-correlation coefficients are positive and
some of them are negative. This confirms the results in
[3], which were obtained numerically through an MC
investigation.

VII.  SUMMARY AND CONCLUSIONS

In this work, we derived the cross-covariance (for
both the synchronous and asynchronous cases) between
the local estimation errors of heterogeneous tracks from
local sensors with different state models. The simulation
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Fig. 11. Cross-correlation coefficients between the elements from
two state vectors.
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results from a scenario with one passive tracker and one
active tracker show the performance of heterogeneous
T2TF with cross-covariance. It can be seen that with the
cross-covariance, the T2TF can achieve improved per-
formance with lower RMSE and better statistical effi-
ciency. The cross-correlation coefficients are sometimes
positive and sometimes negative, which confirms the re-
sults obtain in [3] through an MC investigation.
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